templates - c++ Templated Matrix class multiplication -


i'm kind of new c++, want understand why following doesn't work or i'm doing wrong. i'm trying make matrix class using templates size , apply maths matrix or matrices.

in main.cpp have following within main method.

mat<4, 4> m = mat<4, 4>(1.0f); // identity matrix  mat<2, 3> = mat<2, 3>(2.0f); // matrix 2 rows & 2 columns mat<3, 2> b = mat<3, 2>(3.0f); // matrix 3 rows & 2 columns mat<3, 3> c = * b; // multiplication.  std::cout << c << std::endl; 

with matrix class stated beneath multiplication works when both matrices have same size both number of rows , columns (ie 3x3, 4x4, etc.). it's legit multiply 2 matrices of different sizes long number of columns matrix same number of rows matrix b (ie a<2, 3> * b<3, 2> = c<3, 3>). matrix class needs able multiply matrices same size both number rows , columns (4x4 matrices 3d maths). know i'm doing wrong or understand why isn't working.

matrix class:

template <int rows, int columns> struct mat {     float elements[rows * columns];      // default constructor.     mat()     {         (int = 0; < rows * columns; i++)             elements[i] = (float) 0.0f;     }      // basic constructor     mat(float diagonal) : mat()     {         int min = rows > columns ? columns : rows;         (int = 0; < min; i++)             elements[i + * columns] = diagonal;     }      /*************************     * helper functionalities *     *************************/      // returns identity matrix.     // should used when width , height same.     static mat<4, 4> identity()     {         return mat<4, 4>(1.0f);     }      // returns orthographic matrix.     static mat<4, 4> orthographic(float left, float right, float bottom, float top, float near, float far)     {         mat<4, 4> result(1.0f);          result.elements[0 + 0 * 4] = 2.0f / (right - left);         result.elements[1 + 1 * 4] = 2.0f / (top - bottom);         result.elements[2 + 2 * 4] = 2.0f / (near - far);          result.elements[0 + 3 * 4] = (left + right) / (left - right);         result.elements[1 + 3 * 4] = (bottom + top) / (bottom - top);         result.elements[2 + 3 * 4] = (far + near) / (far - near);          return result;     }      // returns perspective matrix.     static mat<4, 4> perspective(float fov, float aspect, float near, float far)     {         mat<4, 4> result(1.0f);          result.elements[0 + 0 * 4] = (1.0f / tan(torad(0.5f * fov))) / aspect;         result.elements[1 + 1 * 4] = (1.0f / tan(torad(0.5f * fov)));         result.elements[2 + 2 * 4] = (near + far) / (near - far);          result.elements[3 + 2 * 4] = -1.0f;         result.elements[2 + 3 * 4] = (2.0f * near * far) / (near - far);          return result;     }      // returns translation matrix.     static mat<4, 4> translation(const vec<3>& translation)     {         mat<4, 4> result(1.0f);          result.elements[0 + 3 * 4] = translation.x;         result.elements[1 + 3 * 4] = translation.y;         result.elements[2 + 3 * 4] = translation.z;          return result;     }      // returns rotation matrix.     static mat<4, 4> rotation(float angle, const vec<3>& axis)     {         mat<4, 4> result(1.0f);          float radians = torad(angle);         float c = cos(radians);         float s = sin(radians);          result.elements[0 + 0 * 4] = axis.x * (1.0f - c) + c;         result.elements[1 + 0 * 4] = axis.y * axis.x * (1.0f - c) + axis.z * s;         result.elements[2 + 0 * 4] = axis.x * axis.z * (1.0f - c) - axis.y * s;          result.elements[0 + 1 * 4] = axis.x * axis.y * (1.0f - c) - axis.z * s;         result.elements[1 + 1 * 4] = axis.y * (1.0f - c) + c;         result.elements[2 + 1 * 4] = axis.y * axis.z * (1.0f - c) + axis.y * s;          result.elements[0 + 2 * 4] = axis.x * axis.z * (1.0f - c) + axis.y * s;         result.elements[1 + 2 * 4] = axis.y * axis.z * (1.0f - c) - axis.x * s;         result.elements[2 + 2 * 4] = axis.z * (1.0f - c) + c;          return result;     }      // returns scale matrix.     static mat<4, 4> scale(const vec<3>& scale)     {         mat<4, 4> result(1.0f);          result.elements[0 + 0 * 4] = scale.x;         result.elements[1 + 1 * 4] = scale.y;         result.elements[2 + 2 * 4] = scale.z;          return result;     }      /***********************     * math functionalities *     ***********************/      // overloaded addition operator add 2 matrices together.     friend mat<rows, columns> operator + (mat<rows, columns> left, const mat<rows, columns>& right)     {         (int = 0; < rows * columns; i++)             left.elements[i] += right.elements[i];         return left;     }      // overloaded addition operator add scalar matrix.     friend mat<rows, columns> operator + (mat<rows, columns> left, const float& scalar)     {         (int = 0; < rows * columns; i++)             left.elements[i] += scalar;         return left;     }      // overloaded add , assign operator add matrix matrix.     mat<rows, columns>& operator += (const mat<rows, columns>& other)     {         (int = 0; < rows * columns; i++)             elements[i] += other.elements[i];         return *this;     }      // overloaded add , assign operator add scalar matrix.     mat<rows, columns>& operator += (const float& scalar)     {         (int = 0; < rows * columns; i++)             elements[i] += scalar;         return *this;     }      // overloaded subtraction operator subtract matrix matrix.     friend mat<rows, columns> operator - (mat<rows, columns> left, const mat<rows, columns>& right)     {         (int = 0; < rows * columns; i++)             left.elements[i] -= right.elements[i];         return left;     }      // overloaded subtraction operator subtract scalar matrix.     friend mat<rows, columns> operator - (mat<rows, columns> left, const float& scalar)     {         (int = 0; < rows * columns; i++)             left.elements[i] -= scalar;         return left;     }      // overloaded subtract , assign operator subtract matrix matrix.     mat<rows, columns>& operator -= (const mat<rows, columns>& other)     {         (int = 0; < rows * columns; i++)             elements[i] -= other.elements[i];         return *this;     }      // overloaded subtract , assign operator subtract scalar matrix.     mat<rows, columns>& operator -= (const float& scalar)     {         (int = 0; < rows * columns; i++)             elements[i] -= scalar;         return *this;     }      template<int rows, int equals, int columns>     // overloaded multiplication operator multiply matrix matrix.     friend mat<rows, columns> operator * (const mat<rows, equals>& left, const mat<equals, columns>& right)     {         mat<rows, columns> result;          (int y = 0; y < rows; y++)         {             (int x = 0; x < columns; x++)             {                 float sum = 0.0f;                 (int = 0; < columns; i++)                 {                     sum += left.elements[x + * columns] * right.elements[i + y * columns];                 }                  result.elements[x + y * columns] = sum;             }         }          return result;     }      /*************************     * output functionalities *     *************************/      // overloaded output operator print vector output     friend std::ostream& operator << (std::ostream& out, mat& matrix)     {         out << "mat<" << rows << ", " << columns << "> (" << std::endl;          (int y = 0; y < rows; y++)         {             out << "\t";              (int x = 0; x < columns; x++)             {                 out << matrix.elements[x + y * columns];                  if (x < columns - 1)                     out << ", ";                  else                     out << std::endl;             }         }          return out << ")";     } }; 

edit @filmor asked compilation error: error i'm getting error c2995: 'mat operator *(const mat &,const mat &)' : function template has been defined maths\matrix.h 190 1 tests

in piece of code operator* see 2 errors: first of should iterate on equals (not columns) , left matrix has equals columns, need access elements via left.elements[x + * equals]

for (int = 0; < columns; i++) {    sum += left.elements[x + * columns] * right.elements[i + y * columns]; } 

Comments

Popular posts from this blog

javascript - Using jquery append to add option values into a select element not working -

Android soft keyboard reverts to default keyboard on orientation change -

Rendering JButton to get the JCheckBox behavior in a JTable by using images does not update my table -