Difference between forecast and predict function in R -
is there difference between predict()
, forecast()
functions in r?
if yes, in specific cases should used?
intro
predict
-- many kinds of r objects (models). part of base library.forecast
-- time series. part of forecast package. (see example).
example
#load training data trndata = read.csv("http://www.bodowinter.com/tutorial/politeness_data.csv") model <- lm(frequency ~ attitude + scenario, trndata) #create test data tstdata <- t(cbind(c("h1", "h", 2, "pol", 185), c("m1", "m", 1, "pol", 115), c("m1", "m", 1, "inf", 118), c("f1", "f", 3, "inf", 210))) tstdata <- data.frame(tstdata,stringsasfactors = f) colnames(tstdata) <- colnames(trndata) tstdata[,3]=as.numeric(tstdata[,3]) tstdata[,5]=as.numeric(tstdata[,5]) cbind(obs=tstdata$frequency,pred=predict(model,newdata=tstdata)) #forecast x <- read.table(text='day sum 2015-03-04 44 2015-03-05 46 2015-03-06 48 2015-03-07 48 2015-03-08 58 2015-03-09 58 2015-03-10 66 2015-03-11 68 2015-03-12 85 2015-03-13 94 2015-03-14 98 2015-03-15 102 2015-03-16 102 2015-03-17 104 2015-03-18 114', header=true, stringsasfactors=false) library(xts) dates=as.date(x$day,"%y-%m-%d") xs=xts(x$sum,dates) library("forecast") fit <- ets(xs) plot(forecast(fit)) forecast(fit, h=4)
Comments
Post a Comment