r - Why are these numbers not equal? -


the following code wrong. what's problem?

i <- 0.1 <- + 0.05 ## [1] 0.15 if(i==0.15) cat("i equals 0.15") else cat("i not equal 0.15") ## not equal 0.15 

general (language agnostic) reason

since not numbers can represented in ieee floating point arithmetic (the standard computers use represent decimal numbers , math them), not expected. true because values simple, finite decimals (such 0.1 , 0.05) not represented in computer , results of arithmetic on them may not give result identical direct representation of "known" answer.

this known limitation of computer arithmetic , discussed in several places:

comparing scalars

the standard solution in r not use ==, rather all.equal function. or rather, since all.equal gives lots of detail differences if there any, istrue(all.equal(...)).

if(istrue(all.equal(i,0.15))) cat("i equals 0.15") else cat("i not equal 0.15") 

yields

i equals 0.15 

some more examples of using all.equal instead of == (the last example supposed show correctly show differences).

0.1+0.05==0.15 #[1] false istrue(all.equal(0.1+0.05, 0.15)) #[1] true 1-0.1-0.1-0.1==0.7 #[1] false istrue(all.equal(1-0.1-0.1-0.1, 0.7)) #[1] true 0.3/0.1 == 3 #[1] false istrue(all.equal(0.3/0.1, 3)) #[1] true 0.1+0.1==0.15 #[1] false istrue(all.equal(0.1+0.1, 0.15)) #[1] false 

some more detail, directly copied answer similar question:

the problem have encountered floating point cannot represent decimal fractions in cases, means find exact matches fail.

while r lies when say:

1.1-0.2 #[1] 0.9 0.9 #[1] 0.9 

you can find out thinks in decimal:

sprintf("%.54f",1.1-0.2) #[1] "0.900000000000000133226762955018784850835800170898437500" sprintf("%.54f",0.9) #[1] "0.900000000000000022204460492503130808472633361816406250" 

you can see these numbers different, representation bit unwieldy. if @ them in binary (well, hex, equivalent) clearer picture:

sprintf("%a",0.9) #[1] "0x1.ccccccccccccdp-1" sprintf("%a",1.1-0.2) #[1] "0x1.ccccccccccccep-1" sprintf("%a",1.1-0.2-0.9) #[1] "0x1p-53" 

you can see differ 2^-53, important because number smallest representable difference between 2 numbers value close 1, is.

we can find out given computer smallest representable number looking in r's machine field:

 ?.machine  #....  #double.eps     smallest positive floating-point number x   #such 1 + x != 1. equals base^ulp.digits if either   #base 2 or rounding 0; otherwise,   #(base^ulp.digits) / 2. 2.220446e-16.  #....  .machine$double.eps  #[1] 2.220446e-16  sprintf("%a",.machine$double.eps)  #[1] "0x1p-52" 

you can use fact create 'nearly equals' function checks difference close smallest representable number in floating point. in fact exists: all.equal.

?all.equal #.... #all.equal(x,y) utility compare r objects x , y testing ‘near equality’. #.... #all.equal(target, current, #      tolerance = .machine$double.eps ^ 0.5, #      scale = null, check.attributes = true, ...) #.... 

so all.equal function checking difference between numbers square root of smallest difference between 2 mantissas.

this algorithm goes bit funny near extremely small numbers called denormals, don't need worry that.

comparing vectors

the above discussion assumed comparison of 2 single values. in r, there no scalars, vectors , implicit vectorization strength of language. comparing value of vectors element-wise, previous principles hold, implementation different. == vectorized (does element-wise comparison) while all.equal compares whole vectors single entity.

using previous examples

a <- c(0.1+0.05, 1-0.1-0.1-0.1, 0.3/0.1, 0.1+0.1) b <- c(0.15,     0.7,           3,       0.15) 

== not give "expected" result , all.equal not perform element-wise

a==b #[1] false false false false all.equal(a,b) #[1] "mean relative difference: 0.01234568" istrue(all.equal(a,b)) #[1] false 

rather, version loops on 2 vectors must used

mapply(function(x, y) {istrue(all.equal(x, y))}, a, b) #[1]  true  true  true false 

if functional version of desired, can written

elementwise.all.equal <- vectorize(function(x, y) {istrue(all.equal(x, y))}) 

which can called

elementwise.all.equal(a, b) #[1]  true  true  true false 

alternatively, instead of wrapping all.equal in more function calls, can replicate relevant internals of all.equal.numeric , use implicit vectorization:

tolerance = .machine$double.eps^0.5 # default tolerance used in all.equal, # can pick different tolerance match needs  abs(a - b) < tolerance #[1]  true  true  true false 

Comments

Popular posts from this blog

javascript - Using jquery append to add option values into a select element not working -

Android soft keyboard reverts to default keyboard on orientation change -

jquery - javascript onscroll fade same class but with different div -